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PROF. DRAGOS GHIOCA

Problem 1. Find all real numbers a with the property that the equation

x2 − 2x · [x] + x− a = 0

has two distinct nonnegative real roots.

Solution. We let x1 be a solution of this equation and we let n1 be the integer
part of x1; then n1 ≥ 0 by our assumption about the solutions of our equation. So,
x1 = n1 + r1, where 0 ≤ r1 < 1. Then we have

a = (n1 + r1)2 − 2n1(n1 + r1) + n1 + r1 = (n1 − n2
1) + (r21 + r1).

So, we are looking for those numbers a for which there exist another solution
x2 = n2 + r2 (also with 0 ≤ r2 < 1) such that again

a = (n2 − n2
2) + (r22 + r2).

So, the existence of two solutions yields that∣∣(n2
2 − n2)− (n2

1 − n1)
∣∣ =

∣∣(r22 + r2)− (r21 + r1)
∣∣ < 2.

Without loss of generality, we may assume n2 ≥ n1. Now, if n2 = n1, then we
would actually get that also r22 + r2 = r21 + r1 and therefore, either r2 = r1 (which
leads to x2 = x1 and thus, a contradiction that the two solutions are distinct),
or r2 + r1 = −1, which is obviously a contradiction. Therefore, from now on, we
assume that n2 > n1. However, in this case, we have

(n2
2 − n2)− (n2

1 − n1) = (n2 − n1)(n2 + n1 − 1) ≥ n2 + n1 − 1 ≥ 2,

unless n1 = 0 and n2 = 1. Now, if n1 = 0 and n2 = 1, we get that r22 + r2 = r21 + r1
and hence r2 = r1. So, we have indeed two solutions in this case x1 = r and
x2 = 1 + r, where r ∈ [0, 1). We see then that a = r2 + r and so, the values of a
which allow the existence of two nonnegative solutions to the given equations are
all the real numbers in the interval [0, 2).

Problem 2. Let k, n ∈ N such that n ≥ k3 + 1. We partition {1, 2, 3, . . . , 2n} into
k (disjoint) subsets, i.e.,

{1, 2, 3, . . . , 2n} = M1 ∪M2 ∪ · · · ∪Mk.

Prove that there exist i, j ∈ {1, . . . , k} (possibly i = j) and there exist (k + 1)
distinct numbers

x1, . . . , xk+1 ∈ {1, . . . , n}
such that 2x1, . . . , 2xk+1 ∈Mi and 2x1 − 1, . . . , 2xk+1 − 1 ∈Mj .

Solution. For each i = 1, . . . , k, we let

Oi := {1 ≤ j ≤ n : 2j − 1 ∈Mi} and Ei := {1 ≤ j ≤ n : 2j ∈Mi}.
1



2 PROF. DRAGOS GHIOCA

Then our hypothesis yields that

∪ki=1Oi = ∪ki=1Ei = {1, . . . , n}.
Also, Oi∩Oj = Ei∩Ej = ∅ for each i 6= j. The conclusion in our problems asks for
the existence of some i, j ∈ {1, . . . , k} such that # (Ei ∩Oi) ≥ k. However (using
the pigeonhole principle), our hypothesis yields the existence of some i ∈ {1, . . . , k}
such that #Ei ≥ k2 + 1 (since there are n ≥ k3 + 1 in the union of all sets Ei and
there are only k such sets). Then again using the pigeonhole principle, we obtain
that there must be some j ∈ {1, . . . , k} such that Ei∩Oj has at least k+1 elements
since Ei has in common with all the sets Oj at least k2 + 1 elements and there are
only k such sets Oj .

Problem 3. In a finite sequence {xn}1≤n≤m of integers, the sum of each consec-
utive 5 numbers in the sequence is negative, while the sum of each 7 consecutive
numbers in the sequence is positive. Find with proof the largest value for m.

Solution. We claim that m = 10. First of all, if there were a sequence of 11
numbers with this property, then we let yn :=

∑n
i=1 xi for each n = 0, . . . ,m (with

the convention that y0 = 0). Then our hypotheses yield

y0 < y7 < y2 < y9 < y4 < y11 < y6 < y1 < y8 < y3 < y10 < y5 < y0,

which is a contradiction. Now, in order to construct a sequence with 10 terms, then
with the same notation as above, we see that

0 = y0 < y7 < y2 < y9 < y4

and
y6 < y1 < y8 < y3 < y10 < y5 < y0 = 0.

So, in order to construct the sequences {xn}10n=1, all we need is a sequence of
numbers {yn}10n=0 satisfying the above inequalities since then xn = yn − yn−1 for
each n = 1, . . . , 10.

Problem 4. Let n ∈ N and let S be the set of all tuples (a1, . . . , an) satisfying
ai ∈ {−1, 1} for each i = 1, . . . , n. For two elements x, y ∈ S of the form x :=
(a1, . . . , an) and y := (b1, . . . , bn), we define

x · y := (a1b1, a2b2, · · · , anbn) ∈ S.

Let B ⊆ S be a subset with k ≥ 1 elements. Prove that there exists some x0 ∈ S
such that the subset of S given by

x0 ·B := {x0 · y : y ∈ B}

intersects B in a set with at most k2

2n elements.

Solution. We observe that for each pair of elements (y, z) ∈ B×B there exists a
unique x0 ∈ S such that x0y = z. Therefore, since there are k2 such pairs, we have∑

x∈S
# ((x ·B) ∩B) ≤ k2

and since there exist 2n elements in S, the desired conclusion follows.


